Note on Metric Dimension

نویسندگان

  • REESE T. PROSSER
  • R. T. PROSSER
چکیده

The metric dimension of a compact metric space is defined here as the order of growth of the exponential metric entropy of the space. The metric dimension depends on the metric, but is always bounded below by the topological dimension. Moreover, there is always an equivalent metric in which the metric and topological dimensions agree. This result may be used to define the topological dimension in terms of the metric entropy as the infimum of the metric dimension taken over all metrics. Kolmogorov's concept of e-entropy, defined for compact metric spaces [3], has proved a useful measure of the "bulk" of such a space. In this note we relate this concept to the Hausdorff and topological dimensions of spaces for which these dimensions are defined. Our result appears as Theorem 2 below. Let X be a compact metric space, with distance function p. If U is any subset of X, the diameter of U is the finite number (1) 8(U) = sur>{p(x,y):x,yEU}. If 'U. is any family of subsets U of X, then the mesh of It is the number (2) ix = sup{5(c7):t/£0 there exists a finite open cover of mesh0 there exists a finite open cover {Ui\ of X such that yjl, b~(Ui)v<t). In this case we put (4) hd(Z) = ini{p:h-dim(X) g p] Received by the editors May 23, 1969. AMS Subject Classifications. Primary 5435, 5470; Secondary 4141.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

On the metric dimension of bilinear forms graphs

In [R.F. Bailey, K. Meagher, On the metric dimension of Grassmann graphs, arXiv:1010.4495 ], Bailey and Meagher obtained an upper bound on the metric dimension of Grassmann graphs. In this note we show that qn+d−1+⌊ d+1 n ⌋ is an upper bound on the metric dimension of bilinear forms graphs Hq(n, d)when n ≥ d ≥ 2. As a result, we obtain an improvement on Babai’s most general bound for the metric...

متن کامل

On optimal approximability results for computing the strong metric dimension

In this short note, we observe that the problem of computing the strong metric dimension of a graph can be reduced to the problem of computing a minimum node cover of a transformed graph within an additive logarithmic factor. This implies both a 2-approximation algorithm and a (2−ε)-inapproximability for the problem of computing the strong metric dimension of a graph.

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

6 J ul 2 00 6 ON ASYMPTOTIC ASSOUAD - NAGATA DIMENSION

For a large class of metric spaces X including discrete groups we prove that the asymptotic Assouad-Nagata dimension AN-asdim X of X coincides with the covering dimension dim(ν L X) of the Higson corona of X with respect to the sublinear coarse structure on X. Then we apply this fact to prove the equality AN-asdim(X × R) = AN-asdim X + 1. We note that the similar equality for Gromov's asymptoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010